Estimation of Non-Energy Impacts from Energy Efficiency

Jackie Berger

ACEEE 2022 Summer Study On Energy Efficiency in Buildings

Presentation Overview

1. OVERVIEW OF NON-ENERGY IMPACTS

Non-Energy Impacts

Background

Reduced emissions positively impact the environment

Reduced usage improves • Affordability affordability and may reduce collections costs

- Economic
- Environmental
- Health \& Safety

Participant
Benefit
Example
Air sealing increases comfort

- NEIs accrue to participants, utility ratepayers, and society
- May be included in cost-effectiveness tests
- Health \& Safety
- Affordability
- Indoor Air Quality
- Noise
- Water Usage
- Maintenance

Non-Energy Impacts

Typical Approach to Estimation

Challenges in the Literature

Documentation
 Lacking

- Methodology
- Assumptions
- Limitations

NEI Valuation Methods

Survey-Based Approaches

Non-Survey Estimation Examples

Contingent Valuation

- Respondent values

Direct Scaling

- Respondent assigns a dollar value NEI as a \% of energy savings

Labeled
Magnitude
Scaling

- Respondent values NEI on a scale relative to energy savings
- Health - Lit Review: Use estimates of weatherization impact on asthma
- Economic - Calculation: Multipliers applied to expenditures
- Water - Analysis: Estimate savings by analyzing water bills
- Maintenance - Projections: Estimate reduction in lighting replacement labor cost

Contingent Valuation

Method

Survey Question
-Asks respondents to assign
a dollar value associated
with the NEI
"Could you put a positive or
negative dollar value on the
change in winter comfort?
What is that dollar value
from the change in winter
comfort?"

Calculation

- Outliers dropped
- No other adjustment

Advantages

Most Direct Method

No Scaling Assumption

Wide Use in Literature

Answers provide a direct dollar value
Other methods apply scaling with energy savings

Method is well demonstrated in many fields

Disadvantages

Unbounded Responses Respondents provide extreme values

No Point of Reference Hard to assign values without a reference

Low Response Rate Many are unable to answer the question

Direct Scaling

Calculation

-Apply \% to program savings

- Use reported or analyzed bill savings

Advantages

Quantitative Analysis

Familiar Point of

 Reference
Consistent Results

No need to translate from a qualitative response

Mental anchor value helps orient respondents

Within and across studies

Disadvantages

Difficult to Comprehend Conceptualizing percentages can be difficult

Difficult to Answer
Some do not understand

Labeled Magnitude Scaling

Method

-Asks respondents to value an NEI as more or less than energy savings
"Would you say [the value of the NEI] is more value, less value, or the same value to you as any [program savings]?"

Calculation	Multiplier Example	
multiplier	Response	Multiplier
each response	More Value	1.35
-Apply response to program	Same Value	1.00
savings	Less Value	0.65

2. ENERGY EFFICIENCY PROGRAMS \& DATA SOURCES

Programs \& Data Sources

Market Rate Program
Assessment /No Measures
Thermostat Only
Water Heater Only
Heating System
(with or without air conditioning)
HPwES
(air sealing \& insulation; may include HVAC)

Source	Method	Inputs	Use
Usage Analysis	- Weather Normalized - Pre/Post - Comparison Group	- Monthly Energy Usage - Weather Data	- Reality Check
Bill Analysis	- Pre/Post - Comparison Group	- Monthly Energy Cost	- Direct Scaling - Labelled Magnitude Scaling
Participant Survey	- Web/Phone	- Participant Contact	- Contingent Valuation - Direct Scaling - Labelled Magnitude Scaling

3. USAGE \& BILLING ANALYSIS

Usage Analysis Results

Market Rate Program				
Natural Gas	Program Services	\#	Annual Energy Savings (therms)	\% Change
	Thermostat Only	280	7	0.6\%
	Water Heater Only	1,085	-10	-0.9\%
	Heating System	1,261	39**	3.1\%
	HPwES	1,197	202**	16.8\%
	All Programs	2,714	53**	4.3\%

Low Income Program				
	Program Services	$\#$	Annual Energy Savings	$\%$ Change
Electric (kWh)	Electric Baseload	4,773	$817^{* *}$	7.9%
Natural Gas (therms)	Electric Heat	378	$1,449^{* *}$	7.7%

Billing Analysis Results

Market Rate Program

Natural Gas	Program Services	\#		Annual Bill Savings	\% Change
	Thermostat Only	27		\$38**	8.4\%
	Water Heater Only	35		\$29*	7.0\%
	Heating System	1,6		\$46**	9.7\%
	HPwES	37		\$104**	22.8\%
	All Programs	2,9		\$50**	10.7\%
Low Income Program					
	Program Services		\#	Annual Bill Savings	\% Change
Electric \& Natural Gas	Electric Baseload		4,903	\$63**	6.4\%
	Air Sealing and/or Insulation, no HVAC		135	\$33	2.1\%
	With HVAC Measures		350	\$32	2.2\%
	All Job Types		5,388	\$60**	5.9\%

[^0]APPRISE

4. PARTICIPANT SURVEYS

APPRISE NEI Surveys

Market Rate
Response
Rate

Completed Surveys

Low Income

67%

$$
258
$$

Mixed Mode Web/Phone Breakdown of Completed Surveys

41\% 95\%

Advance letters with \$5 incentive

- Three e-mails to selected sample
- At least 9 phone contacts

Non-Energy Impacts Included

- Same for both surveys
- Winter Comfort
- Summer Comfort
- Safety
- Health
- Noise

5. NEI ANALYSIS

Key Analysis Issues

Method	Process	Survey Question	Energy Savings Value	Scaling for More, Less, \& Same Value	Common Steps
Contingent Valuation	Assign a \$ value	"What is that \$ value from the change in X?"			
Direct Scaling	Value NEI as a \% of energy savings	"How does the $\$$ value from X compare to the energy savings - 10% of energy savings, 20\%, 30\%, etc.?"	*Billing analysis \$ savings or respondent reported \$ savings		*Outliers dropped *Valuation of $\$ 0$ assigned to respondents
Labeled Magnitude Scaling	Value NEI on a scale relative to energy savings	"Would you say the value of X is more value, less value, or the same value to you as any program savings?"	*Negative reported and actual savings set to $\$ 0$	*Two sets of multipliers *Previous study values *Direct scaling values (in-sample multipliers)	who had no change in the NEI

Weighting

All NeI Values are Weighted Means

Two Levels of Weighting		Participant Level		Response Level	
Description	$3,953$ Sample Frame	393 Completed Survey	$\underbrace{2}_{\text {weight }}$	201 Completed Question	
Thermostat Only	9\%	25\%	0.347	27\%	0.313
Water Heater Only	11\%	20\%	0.566	28\%	0.401
HVAC	66\%	26\%	2.558	21\%	3.146
HPWES	14\%	30\%	0.484	23\%	0.611

Weights are used to ensure that results represent measure combinations in the sample frame.

Response level weights differ for each NEI and method (example in table: market rate, winter comfort, CV method)

Reported \& Actual Bill Savings

Market Rate Program

Bill		Distribution of Values			
Savings	$\#$	Mean	P25	Median	P75
Reported	180	$\$ 195$	$\$ 0$	$\$ 10$	$\$ 240$
Actual	300	$\$ 58$	$\$ 14$	$\$ 51$	$\$ 92$

Low Income Program					
Bill	$\#$	Distribution of Values			
Savings	$\#$	Mean	P25	Median	P75
Reported	172	$\$ 242$	$\$ 0$	$\$ 80$	$\$ 420$
Actual	107	$\$ 52$	$-\$ 143$	$\$ 28$	$\$ 211$

Low Income Program HVAC Participants
Reported vs Actual Bill Savings (\$)

Reported savings are overestimated and more likely to be exactly $\$ 0$. But respondent NEI valuation relates to respondent's perceived savings.

_MS Multiplier V				Applied Public Policy Research ADDDISE
Previous Study (PNNL)*	Multiplier Value	APPRISE Scale	Multiplier Value	
Much More	1.55	More	1.35	
Somewhat More	1.18			
Same Value	1	Same	1	
Somewhat Less	0.82	Less	0.65	
Much Less	0.475			

Examples of in-sample multipliers from market rate program

LMS Response	Safety Direct Scaling Values		
	Thermostat	HVAC,DHW	HPwES
More Value	0.30	0.68	0.44
Same Value	0.20	0.70	0.40
Less Value	-	0.30	0.15

> Example: Of those who said that the value of improved safety resulting from HPwES was more than the energy savings.
> The value compared to energy savings was on average 44% of energy savings.
*Pacific Northwest National Laboratory Study of NEIs for LED lights (Ledbetter et al. 2019)

Winter Comfort NEI Values

Applied Public Policy Research APPRISE
Institute for Study and Evaluation

Health NEI Values
 \section*{Low Income}

	Weighted Annual Mean NEI Value							
Participant Group		Direct	caling	LMS - PNN	Multipliers	LMS - In-S	Multipl	
	Valuation	Energy Bil	Savings	Energy	Savings	Energ	vings	
		Reported	Actual	Reported	Actual	Reported	Actual	
Electric Baseload	\$1,382	\$39	\$20	\$31	\$52	\$11	\$21	
Air Seal \& Insulate	\$68	\$56	\$3	\$84	\$12	\$28	\$4	
HVAC	\$2,157	\$110	\$11	\$195	\$28	\$97	\$14	
All	\$1,413	How does the $\$$ value from the change in health compare to the energy savings: 10% of energy savings, $20 \%, 30 \%$, etc.?		\$57	\$47	\$24	\$19	
	What is the \$ value from the change in health?	How does the $\$$ value from the change in health compare to the energy savings: 10% of energy savings, $20 \%, 30 \%$, etc.?		Would you say the value of the change in health is more value, less value, or the same value to you as any program savings?				
				- CV method skewed by extreme responses for Baseload and HVAC customers. - Air Sealing and Insulation NEI values relatively low compared to expectations.				

NEI Method Assessment

Method	Process	Survey Question	Advantages	Disadvantages
Contingent Valuation	Assign a \$ value	"What is that \$ value from the change in X?"	- No restrictions on response	- Low response - Extreme values
Direct Scaling	Value NEI as a \% of energy savings	"How does the \$ value from X compare to the energy savings 10\% of energy savings, 20%, 30%, etc.?"	- Easier to answer than contingent valuation	- Clustering at low, mid, and extremes (0\%, 100\%) - Maximum allowed response was 100\%
Labeled Magnitude Scaling	Value NEI on a scale relative to energy savings	"Would you say the value of X is more value, less value, or the same value to you as any program savings?"	- Easiest for respondent to provide answer - Direct scaling, in-sample multiplier derived from program experience	- Need additional information to value the response

Selected NEI Method

Method	Process	Survey Question	Energy Savings Value	Scaling for More, Less, \& Same Value	Common Steps
Contingent Valuation	Assign a \$ value	"What is that \$ value from the change in X ?"			
Direct Scaling	Value NEI as a \% of energy savings	"How does the \$ value from X compare to the energy savings - 10% of energy savings, 20\%, 30\%, etc.?"	*Billing analysis \$ savings or respondent reported savings		*Outliers dropped *Valuation of \$0 assigned to respondents
Labeled Magnitude Scaling	Value NEI on a scale relative to energy savings	"Would you say the value of X is more value, less value, or the same value to you as any program savings?"	*Negative reported and actual savings set to $\$ 0$	*Two sets of multipliers *Previous study values *Direct scaling values (in-sample multipliers)	who had no change in the NEI

Main Findings - Market Rate

Market Rate
NEI Valuations Using LMS with Reported Savings and In-Sample Multipliers

Participant Group	Non-Energy Impact					
	Winter Comfort	Summer Comfort	Safety	Health	Noise	Total NEI
Thermostat Only	$\$ 9$	$\$ 5$	$\$ 3$	$\$ 1$	$\$ 1$	$\$ 19$
Water Heater Only	$<\$ 1$	$\$ 6$	$\$ 8$	$<\$ 1$	$\$ 6$	$\$ 21$
HVAC	$\$ 76$	$\$ 38$	$\$ 62$	$\$ 31$	$\$ 66$	$\$ 273$
HPwES	$\$ 100$	$\$ 126$	$\$ 23$	$\$ 44$	$\$ 39$	$\$ 332$

NEI Values

- As expected, thermostat only customers had low values for each NEI.
- Water heater only customers also had very low values for each NEI
- HVAC customers had highest NEI value for noise, second-highest for all others.
- HPwES customers had highest NEI value overall, and for most of the NEIs.

Main Findings - Low Income

Low Income NEI Valuations Using LMS with Reported Savings and In-Sample Multipliers

	Non-Energy Impact					Total NEI
Participant Group	Winter Comfort	Summer Comfort	Safety	Health	Noise	
Electric Baseload	\$72	\$40	\$34	\$11	\$39	\$196
Air Sealing and Insulation	\$72	\$58	\$36	\$28	\$34	\$228
HVAC	\$74	\$88	\$82	\$97	\$45	\$386

NEI Values

- Winter comfort estimates were similar for all three groups
- Summer comfort estimates were high for HVAC, as expected
- Safety estimates were high for HVAC
- Health estimates were high for HVAC and low for baseload
- Noise estimates were similar for all three groups
- Total estimates were very high for HVAC; baseload not much lower than air sealing/insulation

Improving NEI Valuations

Conduct in－depth interviews
םロロ
Use survey of specific program

םロロ
Collect a large sample －
Achieve high response rates ㅁㅁ
Weight results
ㅁㅁ
Be transparent
ロロロ
Compare to expectations ㅁㅁ
Compare to other studies

Summary

Participant NEIs are difficult to measure

Surveys may be the best approach

Applied Public Policy Research
APPRISE

Jackie Berger
APPRISE
32 Nassau Street, Suite 200
Princeton, NJ 08542
609-252-8009
jackie-berger@appriseinc.org
www.appriseinc.org

[^0]: **Denotes significance at the 99 percent level. *Denotes significance at the 95 percent level.

