

Energy Efficiency Program Evaluation

Jackie Berger February 11, 2021

3

Introduction

Why Energy Efficiency?

Energy Efficiency "The Invisible Fuel"

Cost - \$/kWh

Source: ACEEE

Why Evaluate?

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Measure Program Impacts

- Energy usage
- Energy bill affordability
- Economic impacts
- Environmental impacts
- Health, safety, and comfort
- Delivery to vulnerable households
- Cost benefit analysis

Assess Potential Improvements

- Goals
- Efficiency
- Effectiveness
- Equity
- Targeting
- Client satisfaction

Meet Regulatory Requirements

- State
- PUC
- Other

"Measurement is the first step that leads to control and eventually to improvement. If you can't measure something, you can't understand it. If you can't understand it, you can't control it. If you can't control it, you can't improve it." H. James Harrington

Evaluation Activities

Impact Evaluation Activities	Process E	valuation Activities
Program Data Analysis	How is the	 Documentation review
Usage Impact Analysis	program designed?	 Interviews with program design and management team
Payment Impact Analysis	7	
Economic Impact Analysis	How is the program	 Interviews with program managers and implementers On site observation
Environmental Impact Analysis	implemented?	 Surveys with program participants
Health & Safety Impact Analysis		
Participant Survey	Why is it working or not working?	 Synthesis of all evaluation data
Cost-Benefit Analysis		10

Applied Public Policy Research APPRISE Institute for Study and Evaluation

11

Energy Usage Impact Analysis

Usage Impacts

Research Questions

- Were expected energy savings results obtained?
- Are the treatments costeffective?
- Should measure selection procedures be revised?
- Should installation procedures be reviewed?
- Should contractors be retrained?

Approach

- Goal: Develop most accurate estimate of program savings
- Weigh costs and benefits of various approaches to measurement
- Consider possible causes of mismeasurement or bias

Options

- 1. Deemed Savings
- 2. Projections / Engineering Estimate / Technical Reference Manual
- 3. Energy Usage Billing Analysis

Analysis Approaches

Approach	Cost	Accuracy	Attrition	Reasons for Excluding Jobs from Analysis
Deemed Savings	\$		****	None
Engineering Estimate with Retrofit Data	\$\$	*	***	Retrofit Data Missing
Billing Analysis	\$\$\$	***	**	Usage Data Missing or Inadequate
Metering	\$\$\$\$	****	*	Cost

What Are You Measuring? NPPlied Public Policy Research APPRISE Institute for Study and Evaluation

Approach	Measures	Issues
Deemed Savings	Expected usage change based	•Assumptions
Engineering Estimate	on measures alone	•Other usage changes
$Usage_2 - Usage_1$	Actual change in usage	•Weather •Other factors
Weather Norm Usage ₂ - Usage ₁	Change in usage if both periods had average weather	•Other factors
Weather Norm Usage ₂ - Usage ₁ w/Comp. Group	Other factors held constant (prices, economy, market information, etc.)	•Best estimate of program impact

80°F

Projections

人主

Bad Forecast?

What are TRMs?

use equipment past the expected life

Applied Public Policy Research TRM Calculations APPRISE Institute for Study and Evaluation • Lighting Savings (kWh/yr) = $\frac{(Watts*QTY)_{BL} - (Watts*QTY)_{P}}{1,000}$ * HRS * (1+HVAC_E) HVAC_F accounts for interaction, reduces gas heating saved, increases cooling NJ 2018 saved TRM • HE Gas Boiler Savings (MMBTU/yr) = $\frac{EFLHhet*Btuh*\frac{AFUEee}{AFUEbase}}{1,000,000}$ • EFLH_{het}=equivalent full load heating hours Mid Atlantic • AFUE = efficiency 2016 TRM • LF SH Savings (kWh/yr) = $\frac{(GPM_{BASE} - GPM_{LOW}) * \left(\frac{PH * SPD * SL}{SPH}\right) * 365 * Density * C_P * (T_{OUT} - T_{IN})}{(T_{OUT} - T_{IN})}$ • Gallons per Minute, People in Home, Showers per Day, Shower Length, Showers per MN 2019 Home, Shower Temperature, Groundwater Temperature, Recovery Efficiency (98%) TRM

TRM Advantages & Disadvantages

Advantages (convenience)

Data Requirements

 No post usage data, weather data, or comparison group data

Lower Cost

 Less complicated data analysis

Timeliness

•No need to wait for post usage data

Planning & Reporting

Measure Effectiveness

Incorrect TRM Application

Interactions

New Measures

Variation in Savings

Measured differences may relate to TRM 19

Quality (air sealing

comprehensiveness)

Formula, Input values

Shell & heating system

Or deemed savings

Not included

Lighting & heat gain/loss

How are TRMs Used?

\$.03 cost per kWh saved?

Significantly higher?

Regulatory Reporting

Justify Program Investments

- How are TRM values referred to?
- Does the audience understand what they mean?
- Is this measure an improvement over jobs completed or dollars invested?
- Overemphasis on TRM as a measure of program accomplishments

Non-Energy Impacts

Economic, Environmental, and Other Impacts

- Economic: Energy savings translate into increased spending on goods with greater multiplier than energy
- Environmental: Energy savings translate into reductions in greenhouse gas emissions

Cost-Effectiveness Calculations

Measure Selection, Program Implementation or Continuation

Key input for program and measure-level cost-effectiveness

Program Comparisons

Relative Investments and Savings

How does variation in TRMs impact relative savings?

Energy Efficiency	
Resource Standards	
(EERS)	Performance Incentives & Penalties

- Require utilities to reduce energy consumption by a certain amount over a specified time period
- 27 states had EERS in 2019 (ACEEE https://www.aceee.org/sites/default/files/state-eers-0519.pdf)

Decoupling

Lost Revenue Calculations

Removes connection between utility revenue and sales volume

• Sometimes can only recover revenue related to energy efficiency program savings

TRM Examples

Example 1: Savings from One All Electric Program

Based on Different State TRMs		Study and E		
	2011-2015 Jobs			
Measure	Source	Mean TRM Savings (kWh)		
Inculation - Elect	CT (2016)	150		
	IL (2016)	58		
Room AC - Early Replacement	CT (2016)	59		
Room AC – Early Replacement	PA (2016)	39		
Debumidifier Ferly Devlessment	MN (2016)	136		
Denumidifier – Early Replacement	MA (2013-15)	329		

Example 2: MN Low-Income Utility Wx					
Basic TRM – no interactions no pre-condition info			o pre-condition info		 Utilities can use alternative method Documentation not provided
Busie II		lactions, i			
Utility	Delivery Agencies	Mean Cost	Mean TRM Savin (Therms)	gs	Notes
1	WAP	\$3,482	186		Consistent with WAP Billing analysis. No
2	Non-WAP	\$3,122	159		data to assess Non-WAP.
3	WAP	\$3,354	318		Appears high
4	WAP	\$6,689	546		Appears high. No info on usage. ²¹

APPRISE Institute for Study and Evaluation

Billing Analysis

22

Billing Analysis Data Requirements

Cor	e Data Required	Supplen	nental Data
Energy billing data	 Read date Real / estimated Usage Units 	Energy efficiency measures	Measure-specific impacts
Service delivery date	Divides period into pre- and post-treatment	Service delivery providers	Provider-specific impacts
Monthor	Local weather stationDaily temp	Housing unit characteristics	Relation between
Weather data	 One year pre- and post-treatment Longer normalization period 	Household characteristics	characteristics and savings

Weather Normalize

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Household Level PRISM

- Regression analysis for each household
- Weather-normalized pre-usage, postusage, and change estimated for each household

Advantages

- Remove outliers
- Detailed attrition analysis
- Analysis of usage & savings
 - High & Low Savers
 - Pre-Treatment Usage
 - Contractor
 - Measures
 - Household characteristics
 - Home characteristics

Pooled Fixed Effects Regression

- Usage analyzed for all households within one model
- Average energy savings estimated for all homes

Advantages

- Uses all data / all homes
- Does not require full year pre/post
- Direct estimate of impact
- Controls for exogenous factors

Weather Normalization

APPRISE Institute for Study and Evaluation

Household Level Analysis

Regression Analysis on Each Individual Home $F_i = a + \beta H_i(\tau) + \epsilon_i$

- F_i = average daily usage, time interval i $H_i(\tau)$ = heating degree days to reference temp τ in interval i
- ϵ_i = random error term

Normalized Annual Usage = $365a + \beta H_o(\tau)$ $H_o(\tau)$ = long term mean heating degree days

Use House-by-House Analysis When

- Sufficient usage data for significant % of treatment and comparison
- Data to assess factors related to savings

Use Pooled Analysis When

- Limited usage data availability
- Concern for attrition bias
- Supplemental data not available

Pooled Analysis

$F_{it} = a_i + \beta 1^* H_{it} + \beta 2^* POST_t + \beta 3^* POST_t^* H_{it} + \varepsilon_{it}$

- F_{it} = average daily usage during the preand post-treatment periods
- H_{it} = average daily base 60 HDDs
- POSTt = a dummy variable that is 0 in pre-period and 1 in post-period
- $\varepsilon_{it} = estimation error term$

• PRE USAGE

- a_i = average daily baseload usage in pre-treatment period
- β1 = average daily usage per HDD in the pre-treatment period

POST USAGE

- a_i + β2= average daily baseload usage in post-treatment period
- $\beta 1 + \beta 3 =$ average daily usage per HDD in post-treatment period
- SAVINGS
 - β2 = average daily baseload savings
 - β3 = heating usage savings per HDD

Comparison Groups

Purpose

Control for Exogenous Factors

- Energy Prices
- Economic Conditions
- Pandemics

Random Assignment "Gold Standard"

- Difficult to apply
- Challenge to find participants
- Programs not willing to withhold treatment
- Serve those most in need

Quasi-Experimental Best Alternative

- Later Program Participants
- Low-Income Non-Participants
- Matched Sample

Quasi-Experimental Later Participant Comparison

Difference-in-Difference Analysis

	Pre	Post	Change	Measured
Treatment Group	Year Before Services	Year After Services	Before - After	Program Impact +Other Factors
Comparison Group	2 Years Before	1 Year Before	2 Years Before – 1 Year Before	Other Factors
Treatment - Comparison				Program Impact

Billing Analysis Subgroups

Research Questions

- •Why are savings higher or lower than expected?
- •Which measures are providing savings?
- •Which contractors are most effective?
- How does savings relate to pretreatment usage?
 Are certain types of homes providing higher savings?

Key Factors

Measures Installed
Measure Cost
Pre-Treatment Usage
Contractor
Home Type

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Major Measures

Electric

- •Air Sealing
- Insulation
- Duct Sealing
- Heating System Replacement
- •Air Conditioning Replacement
- Refrigerator
 Replacement

Natural Gas

- •Air Sealing
- Insulation
 - •Attic
 - Floor
 - •Wall
 - Sidewall
- Duct Sealing
- •Heating System Replacement

Rebate Impact Gas Savings by Efficiency

New Jersey Natural Gas SAVEGREEN 2013 participants.

Measure Impacts

 Run regression to determine measure specific impacts

Usage change = $a + \gamma^{1*}$ measure¹ + γ^{2*} measure² + γ^{3*} measure³ + μ

Measure Impacts Low-Income EE Program

New Jersey Comfort Partners 2010-2011 participants.

Measure-Level Impacts Applied Public Policy Research

2016 PGW Low-Income Usage Reduction Program Measure-Level Savings

Measure	Obs.	Savings (ccf/yr)	Projected Savings (ccf/yr)	Realization Rate
Roof Insulation	364	87±33	133	65%
Heating System Replacement	523	284±25	409	69%
Air Sealing w/ Blower Door	718	40±24	112	36%
Air Sealing w/o Blower Door	482	24±26	76	32%
Programmable Thermostat	1,391	37±18	64	57%
Water Heater Replacement	60	71±66	38	184%

Institute for Study and Evaluation

Cost Effectiveness

Purpose

- Determine whether program is cost-effective
- Determine whether specific measures are cost-effective

Description

- Comparison of program benefits and program costs
- Use of discount rate to determine total benefits over lifetime of the measures

Options

- Costs to include
 - Program costs
 - Participant costs
 - Ratepayer costs
- Benefits to include
 - Utility avoided supply costs
 - Participant savings
 - Non-energy benefits

Cost Effectiveness

2016 Low-Income Usage Reduction Program Evaluation

	#	Mean	Mean Total	Cost Per Unit Saved	Measure Life (years)		
	#	Savings	Cost		5	10	15
Electric Base	Electric Baseload						
Electric (kWh)	4,198	887	\$444	\$0.50	\$0.12	\$0.06	\$0.05
Electric Heat	t						
Electric (kWh)	162	1,129	\$1,969	\$1.74	\$0.40	\$0.23	\$0.17
Gas Heat							
Electric (kWh)	841	550	\$203	\$0.37	\$0.09	\$0.05	\$0.04
Gas (ccf)	854	89	\$1,936	\$21.76	\$5.02	\$2.82	\$2.10

Realization Rates

Purpose How do estimated savings compare to projections?

- •Are certain measures underperforming?
- •How should the Technical Reference Manual (TRM) be adjusted?

Computation Program Level or Customer Level

•Average Customer Realization = Mean $\left\{\frac{\text{Usage Impact Savings}}{\text{Projected Savings}}\right\}$

•Average Program Realization = $\frac{Su}{3}$

Sum of Usage Impact Savings Sum of Projected Savings

Adjustment Parameters to Improve Realization Rates

Pre-Treatment Energy Usage	Use of Measures	Measure Interactions
Installation Rates	Installation Quality	

Res High-Efficiency Furnace Replacement

Res High-Efficiency Furnace Replacement

Res High-Efficiency Furnace Replacement

TRM updated based on first evaluation findings

40

Participant Surveys

Participant Surveys

Can provide insights into...

- Motivation to participate
- Barriers to participation
- Changes in energy usage behavior
- Impacts on home comfort
- Impacts on health
- Program satisfaction

A DECEMBER OF A

1.

Participant Surveys

2016 South Jersey Gas Home Performance Program Evaluation

Primary Installation Reason

Participant Surveys

2016 South Jersey Gas Home Performance Program Evaluation

Home Performance with Energy Star Percent Satisfied

Description

- Direct observation of service delivery
- Inspection of completed jobs

Purpose

- Implementation of program protocols
- Usability of program protocols
- Use of equipment
- Provider adaptability

- Comprehensiveness of service delivery
- Quality of work
- Client education
- Client interaction

49

National WAP Evaluation Check List Example

Audit Air Leakage and Insulation Diagnostics	Applicable	Action Taken		
	Observations	#	%	
Measured surfaces	100	94	94%	
Inspected windows	100	96	96%	
Inspected all accessible attics	78	69	88%	
Measured insulation in all accessible attics	79	70	89%	
Created access to inaccessible attics	33	3	10%	
Measured insulation in exterior walls	95	47	49%	
Measured insulation in basement/crawlspace	74	55	74%	
Inspected for all typical bypasses	100	62	62%	
Visual inspection for air sealing opportunities	100	83	83%	
Used blower door while inspecting for leaks	96	64	67%	

National WAP Evaluation Rating Example

	Quality of Attic Insulation
1	All air sealing work completed first
2	Exhaust fans vented to exterior as needed
3	Heat producing devices or systems protected from insulation contact
4	Attic checked for knob and tube wiring
5	Workers wore respirators, safety glasses, gloves, and hard hats while insulating attic
6	Insulation installed in sufficient quantity (bags per ft ²) to meet R-value requirement
7	Proper insulation material chosen for attic conditions
8	Open blow insulation is level and of consistent depth
9	Attic ventilation maintained
10	Confined areas blown to dense pack
11	Proper containment used to protect client and belongings

	Needs Improvement				Excellent		
Rating	1	2	3	4	5		
Total Points needed	0-5	6-7	8-9	10	11	Mean	
Bold Points needed	0	0	0	6	6	Rating	# Rated
Attic Insulation Quality	4%	18%	42%	19%	18%	3.3	57

NJ Comfort Partners Inspection Example Insulation Quality & Missed Opportunities

Applied Public Policy Research

APPRISE

Achieving High Savings

Achieving High Savings

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Target high usage homes that need major measures Identify, prioritize, and install appropriate measures

Ensure that weatherization staff do high quality work

Policies

 Target homes with highest potential

S

U

С

С

Е

S

S

- Prioritize measures with greatest impact
- Furnish providers with right incentives

Practices

- Ensure staff have needed skills and tools
- Use best practices for measure selection
- Complete high-quality installation
- Identify problems, give feedback, resolve issues

Achieving High Savings

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Target High Energy Users

Savings by Pre-Treatment Usage 350 298 (ccf) 250 216 Net Savings 141 150 50 801-1,000 -50 ≤800 >1,000 Pre-Treatment Usage (ccf) **South Jersey Gas** Home Performance with Energy Star

New Jersey Natural Gas Home Performance with Energy Star

Savings by Pre-Treatment Usage

Applied Public Policy Research Achieving High Savings PPRISE Institute for Study and Evaluation **Install Major Measures** Identify and prioritize cost-effective measures with the greatest ulletimpact to achieve usage reduction goals Major Measures Include: Impacts of Installing Major Measures **Electric Heating Jobs** attic air insulation 14% sealing savings 2000 9.5% HVAC savings wall 9% 1500 replacement insulation amount of savings energy saved (kWh) 1000 3.5% savings 500 2 3 4-5 1 refrigerator duct replacement number of major measures installed sealing

Achieving High Savings

Install Major Measures

NJ Comfort Partners

GAS HEATING SAVINGS									
Number of Major	Air Seal, At Wall/P	tic Insulation, Fl Perimeter Insulat	oor Insulation, Sid tion, HVAC Replace	ewall Insulation, , Duct Seal					
Measures		0/-	Net Savings						
	UDS.	%	ccf	%					
None	1,365	28%	11	1.1%					
1 Measure	1,066	22%	35**	3.9%					
2 Measures	1,284	27%	34**	3.5%					
3 Measures	792	16%	97**	8.8%					
4 Measures	260	5%	150**	12.4%					
5-6 Measures	57	1%	218**	15.9%					

**Statistically significant at 95% level.

Achieving High Savings Applied Public Policy Research RISE Institute for Study and Evaluation **Ensure Quality Work** On-site observation and inspections in addition to documentation of procedures, contractor training, and quality control can help increase the use of best practices 93% 88% 85% 76% 70% 65% 53% 32% 15% 5% Inspected all Inspected for Measured Inspected for all Prioritized Used blower door Sealed all major Tested Used blower Created access to while inspecting inaccessible attics accessible attics surfaces sealing at door to guide air sealing typical bypasses opportunities zone pressure top and bottom for leaks air sealing opportunities

Achieving High Savings

Ensure Quality Work

South Jersey Gas

Home Performance with Energy Star

	Treatment					Matched Comparison Group					Not Sovings		Average
Contractor	Oha	Dro	Doct	Savings		Ohc	Dro	Doct	Savings		Net Savings		Project
	ODS	Pie	PUSL	ccf	%	Obs	Pie	PUSI	ccf	%	ccf	%	Cost
Α	281	890	678	211***	23.7%	281	883	897	-14**	-1.6%	225***	25.3%	\$14,756
В	98	834	637	198***	23.7%	98	806	812	-6	-0.7%	204***	24.4%	\$17,697
С	50	746	615	131***	17.6%	50	742	745	-3	-0.4%	135***	18.0%	\$14,839
D	47	901	696	205***	22.7%	47	882	898	-16	-1.9%	221***	24.5%	\$15,743
E	34	872	694	178***	20.4%	34	875	920	-45*	-5.1%	223***	25.5%	\$15,698
F	20	871	732	139***	16.0%	20	864	869	-5	-0.5%	144***	16.5%	\$17,190
Other Contractors	116	887	702	184***	20.8%	116	879	890	-11	-1.2%	195***	22.0%	\$15,595
All	646	859	675	194***	22.3%	646	859	871	-13***	-1.5%	206***	23.8%	\$15,556

Performance Measurement

Performance Measurement

Assessment Example Analyze Program Statistics

	Baseline	Follow-up 1	Follow-up 2
Pre-Usage>1,200 ccf	25%	35%	40%
3 or 4 Major Measures	15%	25%	35%
Wall Insulation	10%	15%	25%
Attic Insulation	50%	55%	60%
Major Air Sealing	55%	55%	60%

Provides critical information about potential savings before post usage data are available.

Achieving High Savings Lessons Learned

Appplied Public Policy Research APPRISE Institute for Study and Evaluation Non-Energy Impacts

Non-Energ	APPRISE				
Background	Institute for Study and Evaluation				
• NEIs accrue to participants, utility ratepayers, and	Societal Benefit Example	Reduced emissions positively impact the environment	EconomicEnvironmentalHealth & Safety		
 society May be included in cost-effectiveness 	Ratepayer Benefit Example	Reduced usage improves affordability and may reduce collections costs	AffordabilityCollections CostsSystem Reliability		
test	Participant Benefit Example	Air sealing increases comfort	 Health & Safety Affordability Indoor Air Quality Noise 		
			Water UsageMaintenance		
Typical Approach to E	stimatior	Challenges in	n the Literature		
Review Past Select	Take Average o	Past Estimates	Out of date Applicability		
Studies Inclusion	Past Stud Impacts	y Research Quality not Assessed	Approach Sample Size Statistical Significance Methodology Assumptions Limitations 65		
		Documentation Lacking			

Non-Energy Impacts

Two NEI Estimates from the Same Survey

Benefit	Reduction	Estimate	Per Job Monetization First Year Benefit		
	Estimate 1	Estimate 2	Estimate 1	Estimate 2	
CO Poisoning	0%	No Report	\$0	\$31.43	
Home Fires	0%	0%	\$0	\$84	
Cold-Related Illness/Death	1%	1%	\$0	\$393.26	
Heat-Related Illness/Death	0%	1%	\$0	\$87.45	
Asthma Emergency Dept. Visits	1%	12%	\$0	\$202.00	
Sleep Problems/Work Productivity	1%	21%	\$0	\$182.33	
Sleep Problems/Housework Productivity	1%	21%	\$0	\$133.67	
Missed Days of Work	.49	.52	\$0	\$20.25	
Short-Term Loans	2%	9%	\$0	\$7.12	
Prescriptions Affordability	10%***	10%	\$43	\$193.98	
Food Affordability	4%	16%	\$0	\$19.92	
Food Assistance	3%	6%	\$0	\$84	
Total Benefit			\$43	\$1,439	

Statistical Significance

At Least 90 Percent Confidence Level

No Requirement

External Data

Only Data from Referenced Survey

External Data Used when Survey Found Small NEI

Non-Energy Impacts

Applied Public Policy Research

APPRISE

Recommendations (

Recommendations

Applied Public Policy Research APPRISE Institute for Study and Evaluation

Energy Efficiency

- Treat high users
- Install major measures where costeffective opportunities exist
- Provide training and quality control to ensure high quality work

Evaluation

- Estimate savings using billing data
- Weather normalize energy usage
- Use comparison group
- Re-assess frequently

Study Review

- Sample
- Attrition/ Response Rate
- Methodology
- Separation between implementation, evaluation, and advocacy?
- Ask questions!

Jackie Berger

APPRISE

32 Nassau Street, Suite 200

Princeton, NJ 08542

609-252-8009

jackie-berger@appriseinc.org

www.appriseinc.org

